Synthesis of Novel Benzoylphenylurea Chitin Inhibitors from Chlorothalonil

Jun LIN^{1,2} * Sheng Jiao YAN^{1,2}, De Shou MAO¹, Rong XU¹, Li Juan YANG^{1,2}, Fu Chu LIU¹

¹ Department of Applied Chemistry, Yunnan University, Kunming 650091 ² State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071

Abstract: Twenty-six novel benzoylphenylurea chitin inhibitor derivatives have been synthesized in over 30~50% yield from chlorothalonil **1** *via* sequential fluorine exchange, aminolysis, hydrolysis, decarboxylation and acylation reactions.

Keywords: Benzoylphenylureas, chitin inhibitor, chlorothalonil.

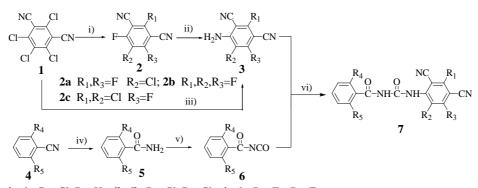
The insecticidal activity of benzoylphenylureas (BPUs) analogues, discovered in the early $1970s^{1.2}$, is connected with the process of moulting. The BPUs class of insect growth regulators (IGRs), interferes the chitin synthesis in target pests, causing death or abortive development, and is considered to be the third generation of insecticides and used as a novel material for insect control. BPUs type insecticides possess high selectivity, low acute toxicity for mammals, and high biological activity resulting in low application doses^{3,4}.

Our attention was focused on the emerging family of insect growth regulators consisting of two aromatic rings linked by a urea bridge. Despite a large number of BPUs derivatives reported so far⁵⁻¹², the preparation of multihalo-cyano-phenyl-containing or 2,3,5-trihalo-phenyl-containing BPUs have not been disclosed. The novel BPUs analogues $7a \sim p$ and $9a \sim j$ have been designed and synthesized, predisposing $7a \sim p$ and $9a \sim j$ to exhibit lasting fungicidal activity as well as the well-known IGR_s function.

Experimental

Chlorothalonil **1** was treated with anhydrous KF in DMF at 110° C to give the corresponding crystalline fluorine-containing 1,3-benzenedicarbonitrile **2a~c**, KF is used in equivalent to the number of chlorine atoms to be substituted¹³, **2a~c** were subsequently reacted with ammonia¹⁴ to provide **3a~f**. In addition, chlorothalonil **1** was subjected to direct aminolysis¹ with ammonia in THF at room temperature to afford **3g**. The structures and yields of **3a~g** were listed in **Table 1**.

^{*} E-mail: linjun@ynu.edu.cn


Jun LIN *et al*.

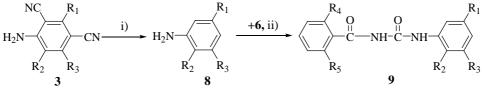
Compound	R_1	R ₂	R ₃	Time(h)	Yield(%)
3 a	F	Cl	F	2	72
3b	F	Cl	NH_2	6	68
3c	F	F	F	3	54
3d	F	F	NH_2	5	89
3e	Cl	C1	F	3	84
3f	Cl	Cl	NH_2	8	52
3g	Cl	Cl	Cl	12	90

Table 1 The structures and yields of 3a~g

Halobenzenenitriles $4a \sim c$ were hydrolyzed with 80% sulphuric acid to give benzamide derivatives $5a \sim c$, followed by refluxing with oxalyl chloride in anhydrous 1,2-dichloroethane (DCE) to yield benzoylisocyanates $6a \sim c$. Finally, sixteen novel BPUs chitin inhibitors $7a \sim p$ (Table 2) were synthesized in over 90% yield *via* the selective reaction of $3a \sim g$ with benzoylisocyanate derivatives $6a \sim c$ (Scheme 1).

Scheme 1

4a-6a R_4 =Cl R_5 =H; **4b-6b** R_4 =Cl R_5 =Cl; **4c-6c** R_4 =F R_5 =F Reagents and conditions: (i) KF, DMF, 110°C; (ii) NH₃·H₂O, DME; (iii) NH₃, THF; (iv) 80% H₂SO₄; (v) (COCl)₂, DCE; (vi) DCE, 0°C.


In addition, the 1,3-dicyanoanilines **3** were hydrolyzed and decarboxylated by heating with 80% sulphuric acid at 150° C for 8 hours affording trihalophenylamines **8a~d** in over 70% yield. Similarly, ten novel analogues of teflubenzuron **9a~j** (**Table 3**) were synthesized by the reaction of **8a~d** with benzoylisocyanate derivatives **6a~c** (Scheme 2).

In comparison to the commercial fungicide chlorothalonil **1**, compound **2a** exhibited increased fungicidal activity against *Piricuaria oryzac* and *Erysiphe* cichoracearum¹⁵. Some **7** and **9** showed potent insecticidal activity against *Plutellaxy Lostella, Culex pipens pallens, mythimna separata Walker*. A detailed investigation into the insecticidal and fungicidal properties of these novel BPUs is in progress.

Compound	R ₁	R_2	R ₃	R_4	R ₅	yield (%)	m.p. (°C)
7a	F	Cl	F	Cl	Н	91	234-237
7b [´]	F	Cl	F	Cl	Cl	93	178-180
7c	F	Cl	F	F	F	91	183-185
7d	F	Cl	NH_2	Cl	Н	93	246-247
7e	F	Cl	NH_2	F	F	92	222-226
7f	F	F	F	Cl	Н	92	152-154
7g	F	F	F	F	F	94	156-160
7 h	F	F	NH_2	C1	Н	94	160-162
7i	F	F	NH_2	F	F	93	165-167
7j	F	F	NH_2	C1	Cl	90	206-208
7k	Cl	Cl	F	Cl	Н	94	213-215
71	Cl	Cl	NH_2	C1	Н	90	233-235
7m	Cl	Cl	NH_2	F	F	96	242-244
7n	Cl	Cl	Cl	C1	Н	93	207-208
70	Cl	Cl	Cl	F	F	94	223-224
7p	Cl	Cl	Cl	C1	Cl	91	232-234

Table 2 The structure, yields and m.p. of BPUs derivatives 7a~p

8a $R_1, R_3 = F R_2 = Cl;$ **8b** $R_1 = F R_2 = Cl;$ $R_3 = NH_2$ **8c** $R_1, R_2 = Cl R_3 = F;$ **8d** $R_1, R_2, R_3 = Cl$ Reagents and conditions: (i) 80% H₂SO₄; (ii) DCE, 0°C.

Table 3 The yields and m.p. of teflubenzuron derivatives 9a~j

Compound	R ₁	R_2	R ₃	R_4	R ₅	yield(%)	m.p. (°C)
9a	F	Cl	F	Cl	Н	95	215-219
9b	F	Cl	F	C1	Cl	90	230-234
9c	F	Cl	F	F	F	93	229-232
9d	Cl	Cl	Cl	C1	Н	92	232-234
9e	Cl	Cl	Cl	C1	Cl	91	251-253
9f	C1	Cl	Cl	F	F	93	242-245
9g	F	Cl	NH_2	Cl	Н	91	215-217
9ĥ	F	Cl	NH_2	Cl	Cl	90	294-296
9i	F	Cl	NH_2	F	F	91	260-262
9j	Cl	Cl	F	F	F	93	215-218

The analytic data including IR, ¹H NMR, ¹³C NMR and HRMS of $7a \sim p$ and $9a \sim f$ were given^{16,17}.

Jun LIN et al.

Acknowledgments

We are grateful to the financial support of the Natural Science Foundation of Yunnan Province (1999B0005M) and the Open Foundation of State Key Laboratory of Elemento-Organic Chemistry, Nankai University.

References and Notes

- 1. K. Wellinga, R. Mulder, Ger. Offen. DE 2,123,236, 1971.
- 2. J. J. Van Dallen, J. Meltzer, R. Mulder, et al. Naturwissenschaften, 1972, 59, 312.
- 3. W. Shuo, D. A. Robin, H. S. John, J. Agric. Food. Chem, 1998, 46, 3330.
- 4. J. W. Wu, Nongyao (Pesticides, in Chinese), 2002, 41, 6.
- 5. K. Wellinga, R. Mulder, J. J. Van Daalen, J. Agric. Food. Chem., 1973, 21, 348.
- 6. R. E. Hackler, G. W. Johnson, J. M. Owen, US 5,811,461, 1998.
- 7. D. A. Herbert, J. Econ. Entomol., 1985, 78, 333.
- 8. A. C. Grosscurt, M. T. Haar, B. Jongsma, A. Stoker, Pestic. Sci., 1988, 22, 51.
- 9. B. S. Clarke, P. Jewess, Pestic. Sci., 1990, 28, 357.
- 10. M. Hussan, H. Perschke, R. Kutscher, Pestic. Sci., 1990, 28, 345.
- 11. K. A. Rowberg, M. Even, J. Agric. Food Chem., 1994, 42, 374.
- 12. R. G. Sbragia, G. W. Johnson, L. L.Karr, et al., US 5,886,221, 1999.
- 13. D. S. Mao, J. Lin, H. Y. Zhu, et al. Huaxue Yanjiu Yu Yingyong (Chem. Res. and Appl., in Chinese), 2001, 13, 107.
- 14. J. S. Moilliet, I. K. Jones, Eur. pat. Appl EP 415,585, 1991.
- 15. D. S. Mao, J. Lin, F. C. Liu, et al. Yunnan Huagong (Yunnan Chem. Tech., in Chinese), 2001, 28, 43.
- 16. Selected ¹H NMR (500 MHz, DMSO-d₆) and HRMS data of diflubenzuron derivatives **7a~e**: **7a.** ¹H NMR: δ 7.00-7.80 (m, 4H, aromatic), 10.46 (s, 1H, ArCON*H*), 10.72 (s, 1H, CON*H*CO); HRMS (*m*/*z*): 393.9847 [M⁺] (calcd. for C₁₆H₆Cl₂F₂N₄O₂, 393.9836). **7b.** ¹H NMR: δ 7.40-7.80 (m, 3H, aromatic), 11.29 (s, 1H, ArCON*H*), 11.30 (s, 1H, CON*H*CO); HRMS (*m*/*z*): 427.9463 [M⁺] (calcd. for C₁₆H₅Cl₃F₂N₄O₂, 427.9446). **7c.** ¹H NMR: δ 7.01-7.70 (m, 3H, aromatic), 11.03 (s, 1H, ArCON*H*), 11.08 (s, 1H, CON*H*CO); HRMS (*m*/*z*): 396.0026 [M⁺] (calcd. for C₁₆H₅ClF₄N₄O₂, 396.0037). **7d.** HRMS (*m*/*z*): 391.0040 [M⁺] (calcd. for C₁₆H₈Cl₂FN₅O₂, 391.0039). **7e.** HRMS (*m*/*z*): 393.0256 [M⁺] (calcd. for C₁₆H₇ClF₃N₅O₂, 393.0240).
- 16. Selected ¹H NMR (500 MHz, DMSO-d₆) and HRMS data of teflubenzuron derivatives **9a~c: 9a.** ¹H NMR: δ 7.34-7.68 (m, 5H, aromatic), 8.06 (d, 1H, J=10 Hz, aromatic), 11.30 (s, 1H, ArCON*H*), 11.70 (s, 1H, CON*H*CO); HRMS (*m*/*z*): 343.9942 [M⁺] (calcd for C₁₄H₈Cl₂F₂N₂O₂, 343.9931). **9b.** ¹H NMR: δ 7.34 (d, 1H, J=10 Hz, aromatic), 7.63-7.66 (m, 3H, aromatic), 8.11(d, 1H, J=10 Hz, aromatic), 11.22 (s, 1H, ArCON*H*), 12.10 (s, 1H, CON*H*CO); HRMS (*m*/*z*): 377.9560 [M⁺] (calcd for C₁₄H₇Cl₃F₂N₂O₂, 377.9541). **9c.** ¹H NMR: δ 7.20-7.60 (m, 4H, aromatic), 7.93(d, 1H, J=10 Hz, aromatic), 10.92 (s, 1H, ArCON*H*), 11.88(s, 1H, CON*H*CO); HRMS (*m*/*z*): 346.0108 [M⁺] (calcd. for C₁₄H₇ClF₄N₂O₂, 346.0132).

Received November 22, 2003

1222